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Nonconvex Splitting for Regularized
Low-Rank + Sparse Decomposition

Rick Chartrand, Senior Member, IEEE

Abstract—Wedevelop newnonconvex approaches formatrix op-
timization problems involving sparsity. The heart of the methods
is a new, nonconvex penalty function that is designed for efficient
minimization by means of a generalized shrinkage operation. We
apply this approach to the decomposition of video into low rank
and sparse components, which is able to separate moving objects
from the stationary background better than in the convex case.
In the case of noisy data, we add a nonconvex regularization, and
apply a splitting approach to decompose the optimization problem
into simple, parallelizable components. The nonconvex regulariza-
tion ameliorates contrast loss, thereby allowing stronger denoising
without losing more signal to the residual.

Index Terms—Algorithms, compressed sensing, optimization,
principal component analysis, video signal processing.

I. INTRODUCTION

T HE field of compressive sensing has seen a proliferation
of research developing algorithms that exploit sparsity

to reconstruct images or signals from very few measurements
[1]. Most such algorithms solve optimization problems con-
taining nonsmooth objective functions, such as the norm.
Because nonsmooth optimization is typically computationally
challenging, from the beginning there has been much emphasis
on the development of efficient algorithms.
The desire for efficiency has motivated the use of convex

optimization in particular [2], [3]. This eliminates the concern
of converging to an undesirable local minimum. However, our
previous work provides substantial evidence [4]–[7] that non-
convex optimization dramatically outperforms convex methods
in theory and in practice, and can be implemented very effi-
ciently [8].
More recently, the technology for sparsity-based optimization

developed for compressive sensing has been applied to matrix
optimization problems. A notable example is matrix comple-
tion, which attempts to reconstruct a matrix with only a small
fraction of its entries known [9], [10]. The assumption that the
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matrix has a low rank plays the analogous role of sparsity in
compressive sensing.
A further extension seeks to decompose a matrix of high-

dimensional data into a sum of two components, one having
low rank, the other being sparse. This can be expressed as the
following optimization problem:

(1)

Here counts the number of nonzero entries, and is
a tuning parameter. We can regard as a low-dimensional de-
scription of the data, while consists of discrepancies from that
model, which can be interesting in their own right. Applications
considered thus far include automated background removal in
video [11], text analysis [12], and image alignment [13].
We can compare (1) to principal component analysis (PCA),

which would compute the matrix of desired rank that mini-
mizes , the Frobenius (or entry-wise Euclidean) norm
of the residual. Because the second term of (1) penalizes only the
number of discrepancies and not their size, the low-dimensional
model will not be perturbed by outliers among the entries of
, and hence will provide a more robust description of most of

the dataset.
This connection between sparse optimization and “robust

PCA” was made by Candès et al. [14], who also provided a
tractable, convex approximation of the NP-hard problem (1):

(2)

The first term is the norm of the vector of singular
values of , and is known as the nuclear norm or Schatten
1-norm of . Further work by Lin et al. [15] developed a more
efficient algorithm, using an alternating direction method of
multipliers (ADMM) approach (see below).
Motivated by previous results in compressive sensing, in this

work we will consider a nonconvex analog of (2), including an
efficient ADMM algorithm. For the case when the data in
is substantially noisy, we will also incorporate additional (non-
convex) regularization, by penalizing oscillation in the sparse
component . This leads to a more formidable optimization
problem to solve, for which wewill combine an aggressive split-
ting method with ADMM.
In the next section, we will derive our nonconvex objective

functions. We use these functions within an ADMM algorithm
in Section III. In Section IV, we add additional regularization
and describe the splitting approach. We test our algorithms on
a synthetic video clip, and a real video clip with and without
added noise in Section V.

U.S. Government work not protected by U.S. copyright.
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A portion of this work appeared in our conference proceed-
ings [8], with fewer details and in the context of compressive
sensing.

II. A NEW NONCONVEX OBJECTIVE FUNCTION AND
-SHRINKAGE

A. Shrinkage

For the moment, consider the following simpler problem:

(3)

with . Notice that we obtain a problem of this form if in
(2) we both fix , and replace the equality constraint with a data
fidelity term. Also, (3) is separable, meaning it can be solved at
each matrix entry independently: ,
where

(4)

(Later, we will consider the matrix containing a vector in
each entry, so here and henceforth we allow the case that and
are vectors.) This is known as the Moreau envelope of .
The (straightforward) solution of (4) is well known to be

given by the following shrinkage operation (also known as soft
thresholding):

(5)

This is the proximal function of . The shrinkage operation
is efficient, and when applied entrywise to matrices is trivially
parallelizable.
The function of defined by (4) is also straightforward to

compute, and is a Huber function:

if ,
if .

(6)

B. Nonconvex Generalization

Now we seek a generalization of (3) that is suitable for non-
convex optimization, while continuing to be efficiently solv-
able. In particular, we will construct a nonconvex function
such that the optimization problem

(7)

can be solved by means of a generalization of the shrinkage
operation (5).
It would seem that a natural way to generalize (3) to the non-

convex setting is to replace the norm with the quasi-norm,
with . This approach is taken by Krishnan and Fergus
in [16] in the context of image deblurring. However, the solu-
tion will no longer be given by a shrinkage. Moreover, the solu-
tion can not even be written explicitly, except for a few special
values of (such as , which leads to a cubic equation).

Fig. 1. Examples of the -Huber function, smoothly splicing a quadratic with
a th-power function.

Instead, we take the approach of [8], and generalize the Huber
function instead:

if ,

if ,
(8)

where is computed tomake a func-
tion for all . (When , we interpret (8) in a weak sense,
and understand to mean , with .) See
Fig. 1 for examples. Note that when , is bounded
above.
Nowwe need to express as aMoreau envelope of a func-

tion , as (4) does for the case of . We will do this using
the Legendre-Fenchel transform, or convex conjugate, defined
as follows: Given a function , its Legendre-Fenchel
transform is the extended-real-valued function
given by:

(9)

Now we define a function by:

(10)

Now by construction, for , is
convex (being a continuous splicing of 0 near the origin, and a
convex functionminus a concave function away from the origin;
see Fig. 13. It is actually convex for as well, but we
shall not use this). Being continuous also, it follows from [17,
Thm. 11.1] that is its own biconjugate, so that

(11)

Rearranging the quadratic terms, we obtain our desired formu-
lation:

(12)

Definition 1: Let be defined by (10). We call the penalty
function

(13)
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Fig. 2. Examples of . It approaches for large , but has a sharp
corner at .

the proximal -norm of , whether is a vector, matrix, or
multidimensional array.
This is a mild abuse of terminology, as possesses most

but not all of the properties required of a norm (see Prop. 3).
Now we give the most important property of :
Proposition 2: The proximal function of is given entry-

wise by the following -shrinkage operation:

(14)

This proposition tells us that our proximal -norm preserves
the property of the norm that optimization problems of the
form (3) can be solved very efficiently. The proof is in the
Appendix.
Now we record some properties of the proximal -norm,

which are established in the Appendix:
Proposition 3: Let . The penalty function is ra-

dial, radially strictly increasing, nonnegative, nonsmooth, con-
tinuous, and satisfies the triangle inequality.
The reader has likely by now surmised that we cannot in gen-

eral write explicitly. See Fig. 2 for numerically-com-
puted examples. It is possible for a few values of , such as

where it can be expressed in terms of the solution of a
cubic equation (much like the proximal function of the norm
above). However, this will not matter, as being able to compute
the proximal function of (that is, the solution of (12)) is all
that will be necessary, and we can do so efficiently by means of
-shrinkage.

III. NONCONVEX ADMM ALGORITHM

Now we can state our nonconvex approximation of (1):

(15)

where is the vector of singular values of . As in [15],
we use an ADMM algorithm to solve (15). First, we relax the
equality constraint, and incorporate an additional variable that
can be interpreted as a Lagrange multiplier:

(16)
The method of multipliers will allow the equality constraint to
hold at convergence. We proceed by alternating between fixing
one of the variables and solving for the other.

With fixed , solving for is a simple -shrinkage operation,
thanks to the design of our objective function:

(17)

Fixing , we need to shrink :

(18)
That is, the shrinkage operation can be passed inside the singular
value decomposition (SVD), a fact established in the Appendix:
Proposition 4: Let the matrix have SVD .

Then the solution of the optimization problem

(19)

is given by .
(The case of was proved in [18], but the proof in the

Appendix is more straightforward as well as more general.)
Finally, we update according to the method of multipliers:

(20)

At each iteration, is decreased by a constant factor, subject to
a lower bound.
In [15], the authors prove that when , the algorithm de-

fined by (17), (18), and (20) converges. We cannot prove con-
vergence in the nonconvex case, but empirically we have found
the algorithm to converge reliably over a broad spectrum of ex-
amples. It can, on occasion, show mild oscillation when very
near convergence, particularly for . We have found we
can stabilize this by mollifying the term in (14), approxi-
mating with . However, we have not found this to be
necessary in any of the examples in this paper, and we defer de-
tailed consideration of this mollification to future work.

IV. REGULARIZATION FOR DECOMPOSITION OF NOISY DATA

Now we consider the case of very noisy data. Clearly, we no
longer wish to enforce the equality constraint. This requires only
removing the Lagrange multiplier from (16). However, we find
this insufficient, with too much noise remaining in the sparse
component .
To remedy this problem, we penalize oscillations in , by

adding a penalty function of , the discrete, 3-D gradient of
interpreted as a spacetime cube. We wish the penalty function

to be nonsmooth, so that the frames of can continue to have
sharp edges. A nonconvex penalty function is also useful, as this
is better able to preserve shapes and contrast [19]. We obtain the
following problem:

(21)

where .
The problem with (21) is that the problem of solving for

with fixed is very difficult. We deal with this by applying
a splitting approach, which can be seen as an extension of the
approach of Wang et al. [20]. We replace both and with
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proxy variables and , then add terms that relax the equality
constraint with each proxy:

(22)

Furthermore, we wish the equality constraints and
to hold at convergence, so we introduce and for the

method of multipliers:

(23)

The new variables and can be solved for by a simple
- (or -) shrinkage, and can be solved for as before. The
subproblem is now quadratic, leading to the following linear

equation:

(24)

As long as we use periodic boundary conditions in our discrete
gradient , the system matrix in (24) will be diagonalized by
the discrete Fourier transform; that is, there is a diagonal matrix
(or equivalently, an entrywise multiplication operator) such
that

(25)

Consequently, we can solve for rapidly by simply taking the
3-D FFT of the right side of (24), dividing entrywise by the
fixed kernel , which can be precomputed (as it doesn’t change
during the iteration), and then taking the inverse FFT.
This gives us the iteration shown in (26) at the bottom of the

page.

Fig. 3. Two frames of a synthetic video clip. The dark square moves from left
to right until it reaches the position shown in the right frame, after which time
it is stationary.

V. NUMERICAL EXPERIMENTS: BACKGROUND
SUBTRACTION IN VIDEO

A. Noiseless Case

1) Synthetic Video: We apply the algorithm defined by (17),
(18), and (20) to a dataset consisting of a video clip, with each
frame comprising a column of our data matrix .We begin with
a synthetic clip, constructed to provide an example where the
ground truth is known. We use a still image of an outdoor scene,
and superimpose various shapes moving across the image, with
different sizes and speeds, and with some shapes having fixed
intensities while others have an intensity that is a fixed value
greater or less than the background (see Fig. 3). We generate
256 frames, each of size 256 256, so our resulting matrix
has size 65536 256.
Since motion of objects within images is a nonlinear process,

we expect a low-rank + sparse decomposition to place all of
the moving objects into the sparse component , so that what
remains can have low rank. This is approximately what is ob-
served in [14]. In our constructed video, a large square moves
across the image, but then is stationary from frame 128 on.
Thus, the optimal should be of rank 2, consisting of the still
image alone for the first 127 frames, followed by the still image
with the superimposed square for the remaining frames. Then

will consist of solely objects that are moving.
We compare the results of our algorithm with [15, Alg. 5],

which corresponds to the case above. Their code, written
by M. Chen and A. Ganesh, initializes to be 4/5 times the

(26)
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TABLE I
DECOMPOSITION RESULTS FOR VARYING

Fig. 4. Same two frames, from the sparse (top) and low rank (bottom) com-
ponents, for the solution of (15) with . The sparse component contains
traces of the background image, while the low rank component contains some
of the dark square before it arrives in its final position.

largest singular value of , giving . At each iteration
is multiplied by 2/3, subject to a lower bound of .

The reduced SVD needed to compute is computed in one of
two ways, depending on the number of singular values and
vectors to be computed. If , Matlab’s ‘econ’ SVD func-
tion is used, otherwise they are computed via Lanczos iterations
using PROPACK (http://soi.stanford.edu/rmunk/PROPACK).
The value of is based on its previous value and the rank of
the previous iterate of ; if was less than , is set to ,
whereas if underestimated (indicating that the rank grew
quickly), is set to . (The values 75 and 14 are based
on heuristics depending on the number of columns of .) The

Fig. 5. As in Fig. 4, now with . The sparse component contains much
less of the background image (except in “camouflage” shapes where it is ex-
pected), and the low-rank component is the best approximation to among
the values of that were tested.

stopping condition is that . For ease of
comparison, we adopt these choices for our algorithm as well.
We consider the cases of . We mea-

sure the results by the SNR of the resulting relative to the
described above. The parameter is chosen (by trial and

error) in each case to maximize the SNR. The results are given
in Table I, with a few cases shown in Figs. 4, 5, and 6. The
videos corresponding to these and subsequent examples will
be available for download in MPEG-4 format at http://ieeex-
plore.ieee.org.
We see that the SNR improves as decreases from 1 to 0.6,

then deteriorates quickly for . The same trend is ob-
served in the rank of , reaching an expected lowest value of 2
before increasing for small . Similarly, the number of nonzero
components is lower when the SNR is higher, except for very
small where decreases again.
The computation times are as computed on a two, 2.66 GHz

core MacBook Pro with 8 GB of memory, running in Matlab
(version R2010a). The time is shortest for , the one case
where no exponentiation is required for the shrinkage. The com-
putation time is also affected by the ranks of the iterates and
the number of iterations required. In Fig. 7 we plot the relative
residual as a function of iteration for . The con-
vergence is fastest for , somewhat slower for , and
much slower for . In the case the convergence
begins to stagnate near our convergence threshold, though by
this time the convergence is already adequate for practical ap-
plications.
2) Traffic Video: We also apply our approach to a real video

clip, one obtained from a traffic camera. The clip was extracted
from the Lankershim dataset (camera 4, 8:45–9:00 AM) avail-
able at http://ngsim-community.org. We consider a portion of
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Fig. 6. As in Fig. 4, now with . The sparse component contains more
of the background image, while the low rank component exhibits substantial
“ghosting,” faint objects moving across the image that should be in the sparse
component instead.

Fig. 7. Plot of the relative residual versus iteration, for three values of . In
addition to giving the most accurate reconstruction, gives faster con-
vergence than the convex case . Reducing to 0.2 results in slower con-
vergence, nearly stalling once the residual gets very small.

288 frames in length, with each frame converted to a grayscale
image of size 240 320 pixels, taking values in [0, 1]. Our re-
sulting data matrix therefore is of size 76 800 288.
We compare the cases of and , the latter having

given the best result in the synthetic video.Without ground truth
to compare with, we choose the parameter subjectively, to give
the best separation between moving and stationary objects. In
the case, analysis in [14] suggests the value
is appropriate, a choice corroborated by our tests. For ,
is manually tuned to give the best background subtraction,

namely . Selected frames are in Figs. 8 and 9.
In the case, the algorithm converged in 33 iterations

to an of rank 145 and an with 21 066 189 nonzero entries.
The large number of nonzero entries is due to a small amount
of noise in the video, all of which ends up . There were many

Fig. 8. Top: two frames from a traffic video clip. Middle: corresponding frame
of , the sparse component, for . contains all moving objects, including
a cyclist and pedestrian, except in the right frame some cars stopped at the stop-
light appear as well. Bottom: corresponding frame of , the low rank compo-
nent. Primarily the stationary background, with occluded traffic lines filled in,
but in the right frame the stationary cars are faint.

Fig. 9. Top: same two frames of as in Fig. 8, except computed using .
contains all moving objects, with the only cars in the right frame being those

still pulling up to the stoplight. Bottom: frames of , the low rank component,
containing the extracted background.

fewer entries of substantial size, with 439 719 entries having
magnitude more than 0.1, or 2% of the total number of entries.
The execution time in Matlab was 275 s on the laptop described
above, or 202 s on an eight, 2.8 GHz core Linux machine with
64 GBmemory. The sparse component contains primarily the
moving objects within the video, mostly cars but also a cyclist
and a pedestrian. However, some cars that are stopped at a red
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Fig. 10. Top: two frames of sparse component , computed using (26) with
. The noise is reduced, but not eliminated entirely. Middle: the residual

contains mostly noise, but some signal leakage is present. Bottom:
the low rank component is entirely noisefree.

light and then proceed upon green end up in throughout. The
low rank component is mostly the stationary background, ex-
cept for cars temporarily coming to a stop being absent.
In the case, the algorithm converged in 39 iterations

to an of rank 12 and an with 19 946 476 nonzero entries,
with 437 923 of them having magnitude over 0.1 (or just under
2%). The execution time was 390 s on the MacBook Pro or
251 s on the eight-core machine. The background subtraction is
generally similar to the case, except that cars temporarily
stopped are in while stopped, and in once they proceed. We
thus obtain a cleaner separation between stationary and moving
objects.

B. Example: Noisy Video

1) Actual Noise: We apply the algorithm (26) first to the
video of the previous section, with the goal of removing the
slight noise that is present. We use , and compare
and (for the penalty function on ). We find that
for the low noise level that is present, the difference between
the two is negligible, and we display only the result in
Fig. 10.
The parameters were chosen manually by trial and error, to

provide a balance between a good separation between moving
and stationary objects, reducing noise in , while keeping the
“signal” present in the residual to a level at most
comparable to the magnitude of the noise. For both values of ,
the values found were and . The
results are not very sensitive to and , whose values were

Fig. 11. Top: two frames from the noisy video. Second row: the background
scene of the reconstruction is essentially the same as in the previous
experiment. Third row: the sparse component contains the moving objects as
before, with less noise than in the original video. Bottom: the residual .
Some signal is present, at an intensity comparable to that of the noise.

left unchanged for all subsequent experiments. Changing only
requires rechoosing , which was chosen to be for
and for . Our previous stopping condition

is no longer applicable, since the residual is
no longer being driven to zero, so we just fix the number of
iterations at a conservative 100.
As seen in Fig. 10, we are able to remove some of the noise,

but a little noise remains. The residual shows the
noise that was removed, as well as a little of the signal, particu-
larly shadows of the cars. The low rank component does not
contain any visible noise (as with the equality constrained al-
gorithm), as almost any noise would greatly increase the rank.
The noise is stronger in the roads than elsewhere, suggesting
Poisson noise (or signal-dependent Gaussian noise, given that
photon counts are not very low). A Poisson log-likelihood term
could give better results than the norm for the residual, but
we will not pursue this here.
As an alternative, we could have simply applied a denoising

algorithm such as total-variation regularization. However, the
current approach has the advantage of removing the background
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Fig. 12. Top: the background scene of the reconstruction is essentially
the same as in the previous experiment and the case. Middle: the sparse
component contains the moving objects as before, with less noise than the
case. Bottom: the residual . Signal in the residual is similar to the

case, despite the better denoising.

from the regularization process, preventing the slight degrada-
tion of fine-scale features in that would be inevitable with any
denoising method.
2) Added Noise: Now we apply the algorithm (26) to

the same traffic video, but now with Gaussian noise of stan-
dard deviation 0.1 added independently to every entry of
. We continue to use , and compare the cases of

. The parameters are chosen as be-
fore to maintain good qualitative background subtraction, while
regularizing only to a degree that results in signal leakage
into the residual to an extent commensurate with the
noise level. Only needs to be rechosen for each ; the other
parameters were , , and . The
additional variables make our simple Matlab implementation
more memory intensive, requiring about 8 GB, so our tests
were run on the eight-core machine described above.
In all cases, the resulting had a rank of 2. The matrix

was completely dense, but this is because sparsity was directly
enforced on the proxy variable , and a residual difference re-
mains. The fraction of entries of having magnitude exceeding
0.1 ranged between 1% and 1.5%, with no clear pattern of de-
pendence on .
Table II reports the SNR of relative to that computed in

Section V-B-1 from the original, low-noise video, this being the
closest we have to a noisefree ground truth. The corresponding
SNR of the original video is 29.15 dB, that of the noise-added
video is 5.00 dB. We find that the best denoising performance is
for , with an SNR of 17.98 dB, compared with 16.97 dB

TABLE II
REGULARIZED DECOMPOSITION RESULTS FOR VARYING

for . See Figs. 11 and 12. Recall that was chosen to give
the same degree of signal leakage into the residual for all values
of ; for smaller , the better shape and contrast preservation
allows the regularization to be stronger for the same degree of
leakage.

VI. CONCLUSION

We presented two nonconvex optimization problems for
sparse matrix optimization, based on a novel nonconvex
penalty that lends itself to efficient minimization via a gener-
alized shrinkage. Our nonconvex generalization of the robust
PCA approach of [15] produces a sparser model that is better
able to distinguish between moving and stationary objects.
Combined with a nonconvex regularization, our splitting algo-
rithm can maintain the background subtraction while removing
substantial noise, more so than convex regularization can.
The area of parameter selection is in need of improvement,

particularly for the algorithm of (26) with its five parameters.
Work is currently ongoing with the authors of [21], in a more
general, nonlinear context, to determine how to select parame-
ters a priori where possible, and otherwise to develop heuristic
strategies that can narrow the search. This work will also address
the issue of stopping conditions. Future work will also include a
massively parallel, GPU implementation of the algorithms pre-
sented here, something facilitated by the straightforward paral-
lelizability of our approach.

APPENDIX A
PROOF OF PROPOSITION 2

Proof: The proximal function of is the solution of the
following optimization problem:

(27)

As both terms are sums of functions depending on a single ma-
trix entry, the optimization problem is separable. Thus, the value
of each entry of the proximal function is the minimizer of
(12). This is the same as the maximizer within the definition
(11) of . By a standard result of convex duality [17, Prop.
11.3], this is given by , from which (14) follows
by a straightforward computation.
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Fig. 13. An example of the function . Its convex conjugate
at is the greatest height above the graph of attained by a line through the
origin with slope .

APPENDIX B
PROOF OF PROPOSITION 3

Proof: First, that is radial follows from (10) and the
fact that is radial. Hence it suffices to consider the scalar
function for ; we will suppress the depen-
dence on and for convenience.
The rest of the properties will follow from the basic properties

of and the definition of the convex conjugate;
see Fig. 13. A key relation, dual to one used above, is the fol-
lowing:

(28)

The maximizer of is unique except when ,
when . Thus we have that
is differentiable except at 0 where it has a subdifferential (the
set of subgradients, which are slopes of supporting “tangent”
lines) of . Thus is nonsmooth. This also tells
us that is continuous away from zero, but it is continuous at
zero as well, since , and as , the maximal height
of above approaches zero as well (see Fig. 13).
To show that is increasing on (0, ), we show that

there. By (28), we need that
exceeds . Differentiating gives us the equation ,
the second term of which making it clear that the solution satis-
fies . Thus is an increasing function of . Since

, this also gives us nonnegativity.
For the triangle inequality, we need to show that

. If , this is trivial. If , then
. Hence

(29)
Lastly, assume , and without loss of generality that
and are positive. If we can show that is decreasing on (0,
) (i.e., that is concave there), the triangle inequality will

follow immediately from and the
fundamental theorem. We have from (28) that ,
where satisfies . Thus

. It is clear (see Fig. 13) that for , is a positive,

increasing function of . Hence is a decreasing function
of , thus is also, completing the proof.

APPENDIX C
PROOF OF PROPOSITION 4

Proof: The Frobenius norm is unitarily invariant, and the
expression is as well, depending on only the sin-
gular values of . We thus have that the following problem is
equivalent to (19):

(30)

If we consider the SVD of as well, say , we can
reformulate (30):

(31)
noting that , and where “diag-
onal” is in the usual sense in the context of the SVD for rect-
angular matrices. Now, it is shown in Example 7.4.13 of [22]
(see particularly (7.4.15)) that the Frobenius-norm term is min-
imized when the unitary factors and are identity
matrices. Consequently, the problem reduces to one involving
diagonal matrices alone,

(32)

The solution is by Prop. 2, giving
.
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